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Abstract. This paper describes a dissipative controller design for networked 
control systems modeled by the Markovian jump system. Dissipativity refers to 
the existence of a supply rate dealing with the system such that the closed-loop 
system has a dissipative property. The main result of this paper is a solvability 
condition in terms of linear matrix inequalities for achieving dissipativity of a 
dynamic output feedback problem in networked control systems via the 
Markovian jump system approach. A numerical example is given to show the 
efficacy of the proposed design. 
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1 Introduction 

The tremendous advancement in communication technology and computer 
networks and the need for real-time requirements in the control process has 
caused the emergence of a new paradigm in control analysis and design, called 
‘networked control system’ (NCS) [1]. An NCS is a control system in which the 
control loop is closed via a shared communication network [2]. A typical NCS 
is depicted in Figure 1 [3]. In this figure, G is the generalized plant, K is the 
controller to be designed, w is the disturbance, u is the control input that is 
generated by the controller, y is the measurement, and z is the controlled output.  
 
There are some parameters that arise when using a network in an NCS, such as 
packet dropout, time delay, and limited bandwidth. These network parameters 
modify the external signal (u,y) of the plant and the controller. The control input 
û going to the plant is no longer equal to the output of the controller, while the 
measured output of plant y is not exactly known by the controller. It is well 
known that the presence of these network parameters can degrade the 
performance of the control loop significantly and lead to instability [4]. 
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Figure 1 Block diagram of NCS. 

Heemels, et al. [4] summarized that the network-induced imperfection 
constraints can be categorized into five types, as follows: 

(a) Quantization errors in the signals transmitted over the network due to the 
finite word length of the packets 

(b) Packet dropouts caused by the unreliability of the network 
(c) Variable sampling/transmission intervals 
(d) Varying communication delays 
(e) Communication constraints caused by the sharing of the network by 

multiple nodes and the fact that only one node is allowed to transmit its 
packet per transmission.  

 
Various methodologies have been proposed for modeling, stability analysis and 
controller designs for NCSs in the presence of these parameters. Hespanha, et 
al. [5] describe an NCS in tutorial fashion and include a direction of research to 
deal with them. Since the number of researches on NCSs is still growing, much 
of the available literature considers some of the above-mentioned types of 
network parameters while ignoring the other types. For example, several 
researchers describe the effect of communication delays, packet dropouts, and 
measurement quantization on NCS performance and derive a controller design 
that tackles these constraints [6-8]. Some authors address packet dropouts in 
NCS modeling and propose an exact characterization for controller synthesis [9-
11]. Two papers consider the quantization effect in NCSs and the development 
of a controller to handle this effect in a closed-loop NCS [12,13].  
 
In controller design, existing methods can be classified into two main categories 
[8]. The first one is to design a controller first and then determine the network 
conditions, such as the maximum allowable transfer interval, to guarantee the 
stability and maintain a certain performance level, e.g. [10,14]. The second one 
is to explicitly incorporate the network-induced constraints using a certain 
model, e.g. the Markov process, into a controller design. The latter has recently 
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emerged as the most popular approach, because the network-induced constraints 
are considered from the beginning of the analysis and synthesis of the NCS. 

 

Meanwhile, the Markovian Jump System (MJS) has attracted increasing 
attention in recent literature, see e.g. [15-18] for linear systems, and [19] for 
nonlinear systems. Such systems have a transition between the models 
determined by a Markov chain. The MJS is considered to be appropriate to 
model plants whose structure is subject to random abrupt changes due to: 
component failure or repair, sudden environmental changes, abrupt variations of 
the operating point of a nonlinear plant, changing subsystem interconnections, 
and so on [9]. There is a quite deep literature for this class of systems [15]; 
previous studies that are relevant to this class of systems in NCS modeling were 
reported in [8,9,16-21], only to name a few.  

In this paper, we address the dissipative problem in designing a dynamic output 
feedback controller for NCSs via a MJS framework. The dissipative concept 
used to analyze and design the control system was initially developed by 
Willems [22]. This concept concerns the analysis and design of control systems 
that use input-output properties based on the energy-related description [23]. 
Practically speaking, a system has a dissipative property if it always dissipates 
energy. This property is an expected behavior, since the storage function of the 
underlying system is closely related to the system’s energy and serves as a 
candidate for the Lyapunov function. When the dissipativity is assured, the 
stability problem can be solved. Meanwhile, the dissipative performance is a 
generalization of the performance measure, such as finite gain (H∞) and 
passivity [22]. Thus, the development of a dissipative framework will generalize 
the existing ones, including H∞ control as well as passivity-based design.  

Using a mathematical abstraction of the notions of physical power and energy, 
researchers have developed a stability analysis and designed a controller for 
various applications in dissipative system frameworks. Recent studies 
concerning the dissipative approach that are in line with our interest are reported 
in [24-28]. Aliyu [24] has proposed a dissipativity analysis for the nonlinear 
Markovian jump system. Zhang, et al. [25] have considered the dissipative 
problem of a class of stochastic hybrid systems and focused on the analysis of 
whether a stochastic hybrid system with time delay is stochastically 
asymptotically stable and strictly dissipative. Mahmoud, et al. [26] have worked 
on a robust dissipative control problem applied to a class of hybrid multi-rate 
control models with time-delay and a switching controller. Zhang, et al. [27] 
derived a linear state feedback controller in a reliable dissipative control 
problem for a class of stochastic hybrid systems. Wang, et al. [28] addressed the 
dissipative problem for uncertain time-delay NCSs. The aforementioned papers 
consider the effect of time delay in the system. So far, to the best of our 
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knowledge, a dissipative control design for NCSs modeled by the MJS has not 
been investigated yet. The development of such a framework would generalize 
the existing ones, including H∞ control and passivity-based NCS design. 

Preliminary results of an NCS control design using the MJS have been 
published in [29]. The present paper extends the work in [29] by providing a 
complete derivation of the NCS design formula and presenting a numerical 
simulation to demonstrate its effectiveness. 

For convenience, we adopt the following notations in this paper. Capital letters 
denote matrices and small letters denote vectors. For real matrices or vectors, 
(.)T  indicates their transpose. For a real square matrix P, we write P > 0 (resp., P 
< 0) if P = PT is symmetric and positive (resp. negative) definite. Matrices and 
vectors, if their dimensions are not explicitly stated, are assumed to be 
compatible for algebraic operations. The symbol (*) denotes each symmetric 
block of matrices. ℜn denotes the space of all n-dimensional vectors. The 
symbol ε{X} denotes the mathematical expectation of X. 0 denotes the zero 
scalar as well as zero matrices with appropriate dimensions. Pr(X) means the 
probability of a random variable X. The set of integer numbers is denoted by ℵ, 
i.e. ℵ = {1, …, N}. 

2 Stability and Dissipativity Analysis of MJS 

Let’s consider the following discrete-time systems  

 
( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( ) ( )

1x k A r k x k B r k w k

z k C r k x k D r k w k

+ = +

= +
 (1) 

where x ∈ ℜn is the state vector, and w ∈ ℜp and z ∈ ℜq are input and output 
respectively. The state matrices are functions of a discrete-time Markov chain 
taking values in a finite set ℵ = {1, …, N}. The Markov chain has transition 

probabilities ( ) ( )( )Pr 1ijp r k j r k i= + = =  which satisfy 0ijp >  and 
1

1
N

ijj
p

=
=∑  

for each i ∈ℵ. The plant initial conditions are given by specifying 

( )0r and ( )0x . When the plant mode is in mode i ∈ℵ (i.e. ( )r k i= ) in the 

sequel, we will use the following notation: ( )( ):iA A r k i= = , ( )( ):iB B r k i= = , 

( )( ):iC C r k i= = , and ( )( ):iD D r k i= = . Plants of this form are called discrete-

time MJS [21].  

Concerning the stability analysis of MJS, there are several forms of stability that 
are summarized in Definition 1, as follows [21]. 
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Definition 1.  Given system (1) with w(k) = 0, the equilibrium point at x = 0 has 
the following properties: 
(a) Mean square stable (MSS) if for every initial state ( )0 0,x r   

 ( ) ( ){ }
0 0,

lim 0
T

k x r
x k x kε

→∞
=          (2) 

(b) Stochastically stable (SS) if for every initial state ( )0 0,x r   

 ( ) ( )
0, 0

0

T

k x r

x k x kε
∞

=

   < ∞ 
  
∑  (3) 

(c) Exponentially MSS (EMSS) if for every initial state ( )0 0,x r , there exists 

constants 0 < α <1 and β > 0 such that 

 ( ) ( )
0, 0

0 0

T k T

x r
x k x k x xε βα  < 
 

 (4) 

All such definitions are referred to in the literature as second-moment stability 
(SMS). In this paper, the notion of stability will be in the sense of SMS. 
Moreover, the method for checking the stability of MJS is given in the 
following proposition. 
 
Proposition 1 [21]. System (1) with w(k) = 0 is SMS if and only if there exist 
positive definite matrices Pi that fulfill the following inequalities  

 0T
i pi i iA P A P− <  (5) 

for all i ∈ ℵ. Ppi are matrices produced from Pi after multiplication by the 
transition probability of the associated Markov chain and given in the following 
form: 

 
1

N

pi ij j
j

P p P
=

=∑        (6) 

For linear deterministic systems, matrices Ppi are equal to constant matrices P, 
so that the stability condition deals with the existence of matrix P which 

satisfies the inequality 0TA PA P− < . The proposition states that SMS is 
equivalent to finding N positive definite matrices Pi. 

Meanwhile, the dissipativity of a system represents a condition in which the 
internal storage of the system never exceeds the storage supplied to the system. 



30 Asep Najmurrokhman, et al. 

This is an important tool for stability analysis, as described in [22], or for 
designing a stabilizing controller, for example with passivity-based control as a 
special case of dissipativity [30]. The concept of dissipativity used in this paper 
can be consulted in [23]. In this paper, we deal with the class of systems that are 
dissipative with respect to a quadratic supply rate that depends on the input and 
the output of the system. To be precise, consider discrete-time systems as in (1). 
A stochastic quadratic supply rate has the form  

 ( ),
T

T

z Q S z
s z w

w S R w
ε
      =      
      

 (7) 

where the dimensions of matrices Q, S, and R are determined by those of z and 
w, and where Q and R are symmetric matrices, respectively. The dissipativity 
analysis can be stated as in definition 2 below, adopted from [24], for discrete-
time cases.  
 
Definition 2. System (1) is said to be dissipative with respect to a quadratic 

supply rate (7) if there is a function  ( ) ( )( ) ( ) ( )( ) ( ), ,
T

V k x k r k x k P r k x k=   

with ( )( ) 0P r k >  for all ( )r k ∈ℵ such that the following inequality is satisfied 

 ( ) ( )( ) ( ) ( )( ){ } ( ) ( )( ){ }1, 1 , 1 , , ,V k x k r k V k x k r k s z k w kε ε+ + + − ≤   (8) 

In the literature, function V, if any, is referred to as a storage function [22, 25]. 
As is well known, the H∞-control problem and passivity are special cases of 
dissipativity [26]. Both former performance measures are covered by selecting 
some appropriate matrices in the quadratic supply rate (7). The LMI condition 
stated in [18] to represent H∞-control analysis can be covered by (7) via 
choosing Q = −I, S = 0, and R = γI, while passive systems are dissipative with 
respect to the supply rate (7) with R and Q are zero matrices, respectively, while 
S is equal to the identity matrix. Without loss of generality, we can make the 
assumption that Q ≤ 0. The following proposition characterizes SMS and the 
dissipativity properties of discrete-time MJS (1).  
 
Proposition 2. Consider the system given by (1). This system is SMS and is 
said to be dissipative with respect to a quadratic supply rate (7) if there exists a 

positive definite matrix ( )( )P r k  for all ( )r k  ∈ℵ, which satisfies the following 

LMI 
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( ) ( )

*
0

T T
i pi i i i i

TT T T T T
i pi i i i i pi i i i i i

A P A P C QC

B P A QD S C B P B R S D D S D QD

 − −
  <
 − + − + + + 

 (9) 

which  

 
1

N

pi ij j
j

P p P
=

=∑   (10) 

Proof.  The above proposition can be proved by using definition 2, then plug 
(1), (7), and (10) in the inequality (8) to get (9). While SMS is assured by the 
fact that the (1,1) block of LMI (9) satisfies inequality (5). 
 
By Schur complement, the dissipativity condition represented by LMI (9) can 
be written in the 4 x 4 matrix block as follows 

 

* * *

* *
0

*

0

i

T T
i i i

pi i pi i pi

i i

P

SC R S D D S

P A P B P

QC QD Q

 
 + +  >
 
 − − − 

 (11) 

It is well known that the existence of a positive storage function that guarantees 
the stability of a dissipative system is assured by the zero-state detectability 
condition of the underlying system [19, 23]. In this case, we assume in the rest 
of this paper that such a condition is also fulfilled. 

3 Dissipative Controller Design 

This part will include the main results of our study. Consider the discrete-time 
MJS as follows:  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1 i i i

zi z i z i

yi yi

x k A x k B u k B w k

z k C x k D u k D w k

y k C x k D w k

 + = + +
 = + +
 = +

 (12) 

where all vectors refer to Figure 1 and all matrices are of compatible 
dimensions. The full order controller associated with (12) to realize a dynamic 
output feedback control problem is represented as follows 

 
( ) ( ) ( )
( ) ( ) ( )

1c Ai c Bi

Ci c Di

x k K x k K y k

u k K x k K y k

+ = +
 = +

 (13) 
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Where ( )cx k  denotes the controller states with the same dimension as plant 

states ( )x k . Given the state space (12), the goal is to determine the controller 

matrices in such a way that we achieve a dissipativity condition of the closed-
loop systems. Connecting the controller (13) to the system (12), the closed-loop 
form is represented as follows 

 
( ) ( ) ( )

( ) ( ) ( )
1 i i

i i

x k A x k B w k

z k C x k D w k

 + = +
 = +

ɶ ɶɶ ɶ

ɶ ɶɶ
 (14) 

where ( )x kɶ represents the augmented state given by 

 ( ) ( )
( )c

x k
x k

x k

 
=  
 

ɶ             (15) 

and the indicated matrices are 

 
1 1i i Di yi i Ci

i
Bi yi Ai

A B K C B K
A

K C K

+ 
=  
 

ɶ  (16) 

 
2 1i i Di yi

i
Bi yi

B B K D
B

K D

+ 
=  
 

ɶ  (17) 

 ( )1 1i zi z i Di yi z i CiC C D K C D K= +ɶ  (18) 

 2 1i z i z i Di yiD D D K D= +ɶ  (19) 

Dissipativity of the closed-loop form is derived by involving the stochastic 
quadratic supply rate (7) and apply LMI condition (11) to closed-loop equation 
(14). Based on Proposition 2, dissipativity is assured if there are some positive 

definite matrices iPɶ  for all i ∈ℵ that satisfy inequality matrix  

 

* * *

* *
0

*

0

i
T T

i i i

pi i pi i pi

i i

P

SC R S D D S

P A P B P

QC QD Q

 
 + +  >
 
  − − − 

ɶ

ɶ ɶ ɶ

ɶɶ ɶ ɶ ɶ

ɶ ɶ

 (20) 

By employing the Schur complement to LMI (20), we can write that LMI as 
follows: 



 Dissipative Controller Design for NCS via MJS Approach 33 
 

 
1

* * *

* *
0

*

0

i

T T
i i i

i i pi

i i

P

S C R S D D S

A B P

QC QD Q

−

 
 ′ + + Φ = >
 
  − − − 

ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ

 (21) 

From the previous explanation, it can be seen that the full order controller that 
imposes a closed-loop system has twice the order of the plant. Therefore, matrix 

inequality (21) needs auxiliary symmetric matrices iPɶ ∈ ℜ2n×2n for all i ∈ℵ. 

Adopting a similar method as in [18], which we employed in our previous paper 

[29], we define a new form of iPɶ  as 2n×2n real matrices, partitioned as follows: 

 
*

ˆ
i

i T
i i

P
Ξ 

=  
Π Ξ 

ɶ , 1
*

ˆ
i

i T
i i

P−
∆ 

=   Λ ∆ 

ɶ ,
0

i
i T

i

I
T

∆ 
=  Λ 
ɶ  (22) 

where all blocks are n × n real matrices. It can be verified that  

 iT
i i i

i

I
T PT

I

∆ 
=  Ξ 

ɶ ɶ ɶ  (23) 

A similar partition is also performed on matrices piPɶ , as follows: 

 
1

*

ˆ

N
pi

pi ij j T
j pi pi

P p P
=

Ξ 
= =   Π Ξ 
∑ɶ ɶ  (24) 

and denoting 

 11

2 3

*i
pi T

i i

P− Ω 
=  Ω Ω 

ɶ , 
0

pi
Ti
pi

I
Q

Ξ 
=  Π 

ɶ  (25) 

it can be easily verified that 

 
11 iT

i pi i
pi

R I
Q P Q

I
−  

=  Ξ 

ɶ ɶɶ  (26) 

Note that matrix inequality (23) and (26) are motivated by the matrix 
definiteness lemma stating that a matrix P is positive definite if and only if there 
is a matrix X such that it satisfies 0TX PX > . In the literature, X is sometimes 
referred to as a congruence transformation of P. Thus, matrix definiteness is 
invariant under congruence transformation. As stated in [18], it is important to 
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see that the four block matrices that define the inverse 1
piP−ɶ depend nonlinearly 

on the four block matricespiPɶ . Since 1 1
1

ˆ T
i pi pi pi pi

− −Ω = Ξ − Π Ξ Π , setting iΠ such 

that ˆ
i iΠ = −Ξ the partitioned matrix in (26) becomes 

 
( ) 1

1 pi piT
i pi i

pi

I
Q P Q

I

−

−
 Ξ + Π
 =
 Ξ 

ɶ ɶɶ  (27) 

Letting the particular choice of ˆ
i iΠ = −Ξ  and constraining matrix iΠ be 

symmetric and the negative definite matrix provide 1ˆ
i i i i

−Π = −Ξ = ∆ −Ξ , 

which enables us to rewrite (27) in the form 

 1 qiT
i pi i

pi

I
Q P Q

I
− ∆ 

=  Ξ 

ɶ ɶɶ  (28) 

In the general case, without the particular choice ˆ
i iΠ = −Ξ , the equality 

1i qiΩ = ∆ does not hold any longer, but matrices1iΩ given by 

 1 1
1

ˆ T
i pi pi pi pi

− −Ω = Ξ − Π Ξ Π  (29) 

satisfy the inequalities 

 ( )1 1 1 1
1

1 1

ˆ
N N

T
i ij j j j j ij j qi

j j

p p− − − −

= =

Ω ≥ Ξ − Π Ξ Π ≥ ∆ ≥ ∆∑ ∑  (30) 

From the previous discussion, matrix inequality (21) holds if and only if there is 
a congruence transformation Ψ such that it satisfies 

 0TΨ ΦΨ >  (31) 

Pick a congruence transformation below 

 ( ), , ,i idiag T I Q IΨ = ɶɶ      (32) 

inequality (31) will yield 

 
1

* * *

* *
0

*

0

T
i i i
T T

i i i i

T T T
i i i i i i pi i

T
i i i

T PT

S C T R S D D S

Q AT Q B Q P Q

QC T QD Q

−

 
 + +  >
 
  − − − 

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶ

 (33)  
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Solve each block of matrix inequalities (33), apply (23), (30), and introduce 
some variables as follows: 

 i DiK K=  (34) 

 T
i Ci i Di yi iL K V K C= + ∆  (35) 

 i pi Bi pi i DiF K B K= Π + Ξ  (36) 

 ( ) ( )T
i pi i i pi Ai pi i Ci i pi Bi pi i Di yi iM A K B K K B K C= Ξ ∆ + Π + Ξ Λ + Π + Ξ ∆  (37) 

then the solvability condition is summarized in the next theorem in order to 
render the dissipativity of the closed-loop form by dynamic output feedback. 
 
Theorem 1. There exists a dynamic output feedback controller of the form (13) 
in order to render the dissipativity of closed loop-form (14) with respect to the 

quadratic supply rate (7) if there exist symmetric matrices , ,i i ijZΞ ∆  and 

matrices , , , ,i i i i iM L F K H of compatible dimensions satisfying the LMIs 

 

* * * * *

* * * *

* * *
0

* *

*

0 0

i

i

T T

T T T T
i i pi

T T
i pi

T T T

I

H H Z

M I

Q

φα β
δ µ η

κ λ
π σ ρ

∆ 
 Ξ 
 
  >

+ − 
 Ξ 
 − 

 (38) 

and 

 0
T

ij i

j

Z H 
>  ∗ ∆ 

 (39) 

for all i, j ∈ℵ×ℵ. Extra matrix variables in the LMI (38) are as follows 
 

 ( )1
T T T T
i zi i z iC L D Sα = ∆ +    ( )1

T T T T
zi yi i z iC C K D Sβ = +  

 ( ) ( )2 1 2 1

TT
z i z i i yi z i z i i yiR S D D K D D D K D Sφ = + + + +  

 1
T T T T
i i i iA L Bδ = ∆ +    

1
T T T
i yi i iA C K Bµ = +  

 2 1
T T T T
i yi i iB D K Bη = +    T T T

i pi yi iA C Fκ = Ξ +  

 2
T T T
i pi yi iB D Fλ = Ξ +    ( )1

T T T T
i zi i z iC L D Qπ = − ∆ +  
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 ( )1
T T T T
zi yi i z iC C K D Qσ = − +   ( )2 1z i z i i yiD D K D Qρ = − +  

Furthermore, whenever (38)-(39) are solvable, a suitable controller is provided 
by  

 
0

0

TT T
Ai Bi i pi i i i ipi pi i

Ci Di i i yi i

K K M AY FB

K K L K C II

 − Ξ ΛΠ Ξ    
=        ∆     

  (40) 

with 1
i i i

−Π = ∆ −Ξ and i iΛ = ∆ for all i ∈ℵ. 

 

Proof. Assume that (21) holds. Partitioning iPɶ  as in (22), 1
piP−ɶ as in (25), and 

multiplying (21) to the right by (32) and to the left by its transpose, we obtain 
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i pi
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 
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 (41) 

By using inequality (30), for 
i qiH = ∆ and 1

ij qi j qiZ Iχ−= Λ Λ ∆ +  with 0χ > , 

(39) can be verified and we obtain 

 1i i pi qi iH H Z I Iχ χ′+ − = ∆ − ≥ Ω −  (42) 

By taking 0χ >  sufficiently small, inequality (41) implies that (38) holds. 
 
Theorem 1 provides a quite general result regarding the solvability condition for 
a dynamic output feedback control problem in order to render the dissipativity 
of closed-loop systems under the Markovian jump system framework. The 
generality of this theorem is provided by noting that the H∞-norm control and 
the passivity condition are obtained by choosing the appropriate supply rate 
function in the general results. Specifically, the H∞-norm control such that its 
norm less than γ, as addressed in [18], is obtained by selecting Q = −I, S = 0, 
and R = γI, while passivity is recovered by choosing Q = R = 0 and S = I. When 
the conditions of Theorem 1 are fulfilled, the computation of a controller that 
solves the dissipative control problem of a dynamic output feedback for the 
Markovian jump system framework can be carried out by the following 
procedure: 
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1. Defining the set of matrix variables , ,i i ijZΞ ∆ , , , , ,i i i i iM L F K H  for all i, j 

∈ℵ×ℵ as a solution of LMI (38) 

2. Setting 1
i i i

−Π = Λ − Ξ , i iΛ = ∆ , 
1

N

pi ij j
j

p
=

Π = Π∑ , and 
1

N

pi ij j
j

p
=

Ξ = Ξ∑  

3. Constructing of controller matrices by inserting all above matrices into 
matrix equation (40). 

4 Application to a Class of Networked Control Systems 

To show the effectiveness of our design, this part considers a numerical 
simulation regarding dissipative controller synthesis for a class of NCSs that has 
packet dropout during data transmission from the sensor-to-controller channel 
as well as from the controller-to-actuator channel. Figure 2 illustrates the NCS 
under consideration.  
 

 

Figure 2 NCS with θi parameter. 

 
In this figure, ( ) { }1 0,1kθ ∈  and ( ) { }2 0,1kθ ∈  denote the indicators of the packet 

dropouts in the sensor-to-controller and controller-to-actuator channels, 
respectively. A value of 0 indicates that the packet is dropped, while a value of 
1 is used to denote the condition whenever the packet is transmitted 
successfully. Following the packet-dropout modeling by Seiler & Sengupta 
[21], θi is a Bernoulli process with the probability of dropout (i.e. θi = 0) equal 
to αi ∈[0,1). For Bernoulli drops, the Markov chain only has two states and the 
transition probability from any state to the dropout state θi = 0 is equal to αi and 
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the transition probability from any state to the state θi = 1 is equal to 1-αi, as 
shown in Figure 3. 

 
Figure 3 Two-state Markov chain for modeling packet dropout. 

 
Define the set  

 ( ) ( )( ) ( ) { } ( ) { }{ }1 2 1 2, : 0,1 , 0,1k k k kθ θ θ θΘ ≡ ∈ ∈  (43) 

Further define { }1,2,3,4kr ∈ℵ ≡  and the one-to-one mapping :f Θ →ℵ  as 

follows: 
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r
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θ θ
θ θ
θ θ
θ θ

 =


=
= 

=
 =

 (44) 

It is assumed that rk is driven by a discrete-time Markov chain and take values 
in ℵ with the transition probability pij = Pr(rk+1 = j | rk = i) with pij ≥ 0 and 

1, ,ijj
p i j= ∀ ∈ℵ∑ . Since random variables of θ1 and θ2 are not correlated, it is 

clear that pi1 = α1α2, pi2 = α1(1-α2), pi3 = α2(1-α1), and pi4 = (1-α1)(1-α2). 
Furthermore, we consider the spring-mass-damper model taken from [31] as 
shown in Figure 4.   
 

 
Figure 4  A spring-mass-damper model [31]. 
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The first mass is attached to a fixed endpoint through another spring. The 
problem is to control the position and velocity of the second mass by applying a 
horizontal force on it. A state space representation in the form of continuous 
time of that model is taken from [18] as follows:  

 
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2

1 2z z z

y y

x Ax t B u t B w t

z t C x t D u t D w t

y t C x t D w t

 = + +
 = + +
 = +

ɺ

 

with each matrix is in the following:  

 

0 0 1 0

0 0 0 1

30.0 10.0 0.36 0.36

5.0 5.0 0.18 0.18
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T
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2

0 1 0 0

0 0 0 0

T

B
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=  
 
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zC
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zD =  
2

0 0

0 0

0 0
zD
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1 0 0 0

0 0 1 0yC
 

=  
 

  
0 0.1

0 0.125yD
 

=  
 

 

 
In the context of NCS, the position and velocity of the first mass can be 
measured and delivered to the controller through the sensor-to-controller 
channel in the communication network. Subsequently, a controller is designed 
to overcome the packet dropout parameter which appears in the sensor-to-
controller and controller-to-actuator channels. By choosing a state in the 
Markov chain under consideration as in (44), the state space representation in 
the form of discrete-time (12) is as follows: 

 

0.7562 0.5086 0.07911 0.1435

0.2092 0.5604 0.07175 0.4012

1.656 0.07364 0.7588 0.5113

0.1463 1.289 0.2556 0.514

iA

− 
 
 =
 − −
 − − 

 

( )12 14 0.02304 0.111 0.1435 0.4012
T

B B= =       ( )11 13 0 0 0 0
T

B B= =  
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2

0.1252 0.4171 0.5086 0.4396

0 0 0 0

T

iB
− 

=  
 

    

 

0 50.0 0 0

0 0 0 1.8

0 0 0 0
ziC

 
 =  
 
 

 

 ( )12 14 0 0 1
T

z zD D= =  ( )11 13 0 0 0
T

z zD D= =  

 
2

0 0

0 0

0 0
z iD

 
 =  
 
 

 

 
2 4

1 0 0 0

0 0 1 0y yC C
 

= =  
 

         
1 3

0 0 0 0

0 0 0 0y yC C
 

= =  
 

 

 2 4

0 0.1

0 0.125y yD D
 = =  
 

  
1 3

0 0

0 0y yD D
 

= =  
 

 

 
The discrete-time version of this model is obtained by discretization of the 
continuous model with a sampling time of 0.5 s and a zero order hold placed on 
each input. For the purpose of simulation, we choose Q = −I, S = 0, and R = γI 
in the supply rate (7), which means that we deal with the H∞-control 
performance as a special case of dissipative performance. Table 1 shows the 
performance of the system with different probabilities of packet dropout. 

Table 1 H∞-norm of different probabilities of packet dropout. 

αααα1 αααα2 γγγγ 
0.1 0.1 32.5 
0.1 0.5 38.0 
0.5 0.5 56.9 
0.6 0.7 71.3 
0.7 0.8 75.4 
0.9 0.9 177.8 

 
From this table we know that the more packet dropout, the poorer the 
performance of the system. The mode transition during the simulation is 
depicted in Figure 5. Figures 6-8 shows the time-response of the controlled 
output and the control input of the closed-loop system under the specified mode 
transition as depicted in Figure 5.  
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Figure 5 Mode transition. 
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Figure 6 Time-response of controlled output and control input, respectively, for 
packet dropout equals 10 %. 
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Figure 7 Time-response of controlled output and control input, respectively, 
when packet dropout equals 50 %. 
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Figure 8 Time-response of controlled output and control input, respectively, 
when packet dropout equals 90 %. 

It can be seen from all figures that the designed controller is capable of 
overcoming the packet dropout effect in the network. However, the simulation 
result deserves some remarks. We take the three values of probability of packet 
dropout, which indicate a good, medium, and bad condition of the network, 
respectively. First we consider the case when αi = 0.1, which means the 
probability of successfully transmitting a data packet equals 90%. As can be 
observed from Figure 6, the time response of the controlled output tends to 
converge with some spikes, which happen during inter mode transition. The 
amount of control input is small enough for a small probability of packet 
dropout. Next we take two other cases, which represent a medium and a bad 
condition of the network. As shown in Figures 7 and 8, the higher the 
probability of packet dropout, the more control input is required. The effect of 
the probability of packet dropout on the amount of control input is quite 
straightforward. 

 
To test the robustness to modeling uncertainty, we employed a state matrix in 
the form of A + ∆A instead of A in our simulation. The value of ∆A is given by 
the percentage amount to nominal plant A. By utilizing the algorithm proposed 
in the controller design, we obtained that an amount of 10% from the nominal 
plant is worst-case performance. Figure 9 and 10 show the time-response of the 
controlled output of the closed-loop system and the control input, respectively, 
with modeling uncertainty about 10% as the probability of packet dropout 
equals 0.1. From this simulation, we can observe that the proposed method 
renders the robustness of the closed-loop NCS to a prescribed modeling 
uncertainty. 



 Dissipative Controller Design for NCS via MJS Approach 43 
 

0 5 10 15
-30

-20

-10

0

10

20

30

time (s)

co
nt

ro
lle

d 
ou

tp
ut

 

 
z1

z2

z3

 
Figure 9 Time-response of controlled output with modeling uncertainty about 
10% from nominal plant when packet dropout equals 10 %. 
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Figure 10 Time-response of control input with modeling uncertainty about 
10% from nominal plant when packet dropout equals 10 %. 
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5 Conclusions 

This paper presents a dissipative controller design for a dynamic output 
feedback problem in NCSs modeled by the Markovian jump system. The main 
result is that the solvability condition of that problem, represented by two LMIs, 
was solved. Based on the solutions of the LMIs, we were able to construct a 
controller by plugging unknown variables in those LMIs into the controller 
matrices equation. We applied the results to a controller design for a class of 
NCSs that has packet dropout during data transmission from the sensor-to-
controller channel as well as from the controller-to-actuator channel. Our 
numerical simulation showed that the designed controller is capable of 
overcoming the packet dropout effect in the network, as well as rendering the 
robustness property to a prescribed modeling uncertainty. Further studies will 
be focused on the inclusion of a parametric uncertainty and then designing 
robust control systematically with dissipative performance, as well as exploring 
a nonlinear model of an NCS under the Markovian jump system framework.  
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