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Abstract. This paper describes a dissipative controller desay networked
control systems modeled by the Markovian jump systBissipativity refers to
the existence of a supply rate dealing with theesgssuch that the closed-loop
system has a dissipative property. The main reguthis paper is a solvability
condition in terms of linear matrix inequalitiesr fachieving dissipativity of a
dynamic output feedback problem in networked cdnggstems via the
Markovian jump system approach. A numerical exaniplgiven to show the
efficacy of the proposed design.
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1 Introduction

The tremendous advancement in communication teogwohnd computer
networks and the need for real-time requirementthé control process has
caused the emergence of a new paradigm in comedysis and design, called
‘networked control system’ (NCS) [1]. An NCS is@ntrol system in which the
control loop is closed via a shared communicatietwork [2]. A typical NCS
is depicted in Figure 1 [3]. In this figur& is the generalized plank is the
controller to be designedy is the disturbancey is the control input that is
generated by the controlleris the measurement, amnds the controlled output.

There are some parameters that arise when usiegn@nk in an NCS, such as
packet dropout, time delay, and limited bandwidthese network parameters
modify the external signalfy) of the plant and the controller. The control ihpu
Ugoing to the plant is no longer equal to the outgftthe controller, while the

measured output of plagtis not exactly known by the controller. It is well
known that the presence of these network parametars degrade the

performance of the control loop significantly aedd to instability [4].
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Figurel Block diagram of NCS.

Heemels, et al. [4] summarized that the network-induced imperfattio
constraints can be categorized into five type$okmws:

(a) Quantization errors in the signals transmitted dwer network due to the
finite word length of the packets

(b) Packet dropouts caused by the unreliability ofrtévork

(c) Variable sampling/transmission intervals

(d) Varying communication delays

(e) Communication constraints caused by the sharinghef network by
multiple nodes and the fact that only one nodell@vad to transmit its
packet per transmission.

Various methodologies have been proposed for mugleditability analysis and
controller designs for NCSs in the presence ofehgrameters. Hespanteh,
al. [5] describe an NCS in tutorial fashion and inldwa direction of research to
deal with them. Since the number of researches@8aNs still growing, much
of the available literature considers some of tbheva-mentioned types of
network parameters while ignoring the other typEsr example, several
researchers describe the effect of communicatidéaygepacket dropouts, and
measurement quantization on NCS performance andedarcontroller design
that tackles these constraints [6-8]. Some authdoyess packet dropouts in
NCS modeling and propose an exact characterizidiorontroller synthesis [9-
11]. Two papers consider the guantization effedI@Ss and the development
of a controller to handle this effect in a closedd NCS [12,13].

In controller design, existing methods can be diaskinto two main categories
[8]. The first one is to design a controller fiestd then determine the network
conditions, such as the maximum allowable transferval, to guarantee the
stability and maintain a certain performance leedy, [10,14]. The second one
Is to explicitly incorporate the network-inducednstraints using a certain
model, e.g. the Markov process, into a controlisigh. The latter has recently
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emerged as the most popular approach, becausetilierk-induced constraints
are considered from the beginning of the analysissynthesis of the NCS.

Meanwhile, the Markovian Jump System (MJS) hasaei®d increasing
attention in recent literature, see e.g. [15-18]lioear systems, and [19] for
nonlinear systems. Such systems have a transitietwelen the models
determined by a Markov chain. The MJS is considdcetie appropriate to
model plants whose structure is subject to randtwmup changes due to:
component failure or repair, sudden environmerttahges, abrupt variations of
the operating point of a nonlinear plant, changuobsystem interconnections,
and so on [9]. There is a quite deep literaturethios class of systems [15];
previous studies that are relevant to this clasg/stems in NCS modeling were
reported in [8,9,16-21], only to name a few

In this paper, we address the dissipative probtenesigning a dynamic output
feedback controller for NCSs via a MJS frameworke Tdissipative concept
used to analyze and design the control system witially developed by
Willems [22]. This concept concerns the analysis design of control systems
that use input-output properties based on the gnetgted description [23].
Practically speaking, a system has a dissipatiopegty if it always dissipates
energy. This property is an expected behavioresthe storage function of the
underlying system is closely related to the sys$eemergy and serves as a
candidate for the Lyapunov function. When the g@iasvity is assured, the
stability problem can be solved. Meanwhile, thesigiative performance is a
generalization of the performance measure, sucHing®e gain (H) and
passivity [22]. Thus, the development of a dissygaframework will generalize
the existing ones, includingtontrol as well as passivity-based design.

Using a mathematical abstraction of the notionplofsicalpower and energy,
researchers have developed a stabdityalysis and designed a controller for
various applicationsin dissipative system frameworks. Recent studies
concerning the dissipative approach that are mwith our interest are reported
in [24-28]. Aliyu [24] has proposed a dissipativiggalysis for the nonlinear
Markovian jump system. Zhangf al. [25] have considered the dissipative
problem of a class of stochastic hybrid systemsfandsed on the analysis of
whether a stochastic hybrid system with time delay stochastically
asymptotically stable and strictly dissipative. Majud,et al. [26] have worked
on a robust dissipative control problem appliectolass of hybrid multi-rate
control models with time-delay and a switching colér. Zhang,et al. [27]
derived a linear state feedback controller in aabét dissipative control
problem for a class of stochastic hybrid systemany\et al. [28] addressed the
dissipative problem for uncertain time-delay NCBse aforementioned papers
consider the effect of time delay in the system.f&o to the best of our
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knowledge, a dissipative control design for NCSsleted by the MJS has not
been investigated yet. The development of suclamdwork would generalize
the existing ones, includingtontrol and passivity-based NCS design.

Preliminary results of an NCS control design usthg MJS have been
published in [29]. The present paper extends thekwo[29] by providing a
complete derivation of the NCS design formula amdsenting a numerical
simulation to demonstrate its effectiveness.

For convenience, we adopt the following notatianshis paper. Capital letters
denote matrices and small letters denote vectansrdal matrices or vectors,
(.)" indicates their transpose. For a real square mtrive writeP > 0 (resp.P

< 0) if P =P is symmetric and positive (resp. negative) dedinfatrices and
vectors, if their dimensions are not explicitly teth are assumed to be
compatible for algebraic operations. The symbol d&hotes each symmetric
block of matrices.0" denotes the space of altdimensional vectors. The
symbol e{X} denotes the mathematical expectation of X. (hakes the zero
scalar as well as zero matrices with appropriateedsions. Pr(X) means the
probability of a random variable X. The set of gge numbers is denoted by,
ie.0={1,...,N}L

2 Stability and Dissipativity Analysis of MJS
Let’s consider the following discrete-time systems
x(k+1) = A(r () x(K)+ B(r (k) w(K)
2(k) =C(r () (k) + D{r (k) w(k)
wherex 0 0" is the state vector, ad J 0" andz 00 0% are input and output

respectively. The state matrices are functions disarete-time Markov chain
taking values in a finite séf = {1, ..., N}. The Markov chain has transition

probabilities p, = Pr(r (k+1) = j|r (k) =i) which satisfyp; >0 and Z'j\'zl p, =1

(1)

for eachi 0OO. The plant initial conditions are given by spetify
r(0)andx(0). When the plant mode is in modeld (i.e. r(k)=i) in the
sequel, we will use the following notation; := A(r (k) =i), B := B(r (k)= i),

C =C(r(k)=i), andD, := D(r (k) =i). Plants of this form are called discrete-
time MJS [21].

Concerning the stability analysis of MJS, theresaeeral forms of stability that
are summarized in Definition 1, as follows [21].
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Definition 1. Given system (1) witlu(k) = 0, the equilibrium point a¢= 0 has
the following properties:
(2) Mean square stable (MSS) if for every initial stftg, 1, )

lim é‘{X(k)T x(k

K - o0

) }:o @)
X0:lo

(b) Stochastically stable (SS) if for every initialtstdx,, I,)

} < o0 3
%o,To

(c) ExponentiallyMSS (EMSS)if for every initial state(X,,r,), there exists
constants 0 « <1 andB > 0 such that

£{x(k)T x(K) }< Baxix, @)

All such definitions are referred to in the litens as second-moment stability
(SMS). In this paper, the notion of stability wile in the sense of SMS.
Moreover, the method for checking the stability MfIS is given in the
following proposition.

£{Zx (k) x(K)

%10

Proposition 1 [21]. System (1) withw(k) = 0 is SMS if and only if there exist
positive definite matriceB, that fulfill the following inequalities

A'P;,A-R <0 (5)

for all i O O. P, are matrices produced froR after multiplication by the
transition probability of the associated Markov iohand given in the following
form:

N
P, =2, pP (6)
j=1

For linear deterministic systems, matriégsare equal to constant matrides
so that the stability condition deals with the &mge of matrixP which
satisfies the inequalith’ PA—P <0. The proposition states that SMS is
equivalent to findindN positive definite matriceB;.

Meanwhile, the dissipativity of a system represemtsondition in which the
internal storage of the system never exceeds tinage supplied to the system.
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This is an important tool for stability analysiss described in [22], or for
designing a stabilizing controller, for example wfiassivity-based control as a
special case of dissipativity [30]. The conceptliskipativity used in this paper
can be consulted in [23]. In this paper, we ded#h e class of systems that are
dissipative with respect to a quadratic supply th& depends on the input and
the output of the system. To be precise, considerate-time systems as in (1).
A stochastic quadratic supply rate has the form

ool 3)(2 312)

where the dimensions of matric® S, andR are determined by those nand
w, and whereQ and R are symmetric matrices, respectively. The dissifgti
analysis can be stated as in definition 2 belowpgetl from [24], for discrete-
time cases.

Definition 2. System (1) is said to be dissipative with resgeca quadratic
supply rate (7) if there is a functior}\/(k,x(k),r(k))=x(k)T P(r(k))x(k)

with P(r(k)) >0 for all r(k) 00 such that the following inequality is satisfied

£{V(k+1,x(k+]) ,r(k+]))—v(k,x(k) r(k))} ss{s(z(k) w(k))} (8)

In the literature, functiolV, if any, is referred to as a storage function [24),

As is well known, the KH-control problem and passivity are special cases of
dissipativity [26]. Both former performance measuage covered by selecting
some appropriate matrices in the quadratic supgly ¢7). The LMI condition
stated in [18] to represent.Hontrol analysis can be covered by (7) via
choosingQ = -1, S= 0, andR = yl, while passive systems are dissipative with
respect to the supply rate (7) wRandQ are zero matrices, respectively, while
Sis equal to the identity matrixVithout loss of generality, we can make the
assumption that & 0. The following proposition characterizes SMS inel
dissipativity properties of discrete-time MJS (1).

Proposition 2. Consider the system given by (1). This system isSSMd is
said to be dissipative with respect to a quadmatjuply rate (7) if there exists a

positive definite matrixP(r (k) for allr (k) OO, which satisfies the following
LMI
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A'P.A-R-CIQC '

T T T T T T <0 (9)
Bu PpiA_(QDi +S) Ci Bu PpiBl _(R"'S Di +Di S+Di QDi)
which
N
Py =2.P;P (10)
j=1

Proof. The above proposition can be proved by usingnitefih 2, then plug
(1), (7), and (10) in the inequality (8) to get.(®hile SMS is assured by the
fact that the (1,1) block of LMI (9) satisfies ineity (5).

By Schur complement, the dissipativity conditiopresented by LMI (9) can
be written in the 4 x 4 matrix block as follows

P * * *
: +S'D. +D’' ook
SC R+S'D+D'S " 5o 1)
I:)pi'A\ PpiBI I:)pi
_QC. _QDi 0 -Q

It is well known that the existence of a posititerage function that guarantees
the stability of a dissipative system is assuredth®y zero-state detectability
condition of the underlying system [19, 23]. Instltiase, we assume in the rest
of this paper that such a condition is also fugfill

3 Dissipative Controller Design

This part will include the main results of our stu€onsider the discrete-time
MJS as follows:

x(k+1) = Ax(k) +Byu(k) + B, w(k)
z(k) =C,x(k) + D, u(k)+ D, w(k) (12)
y(k) =Cyx(k) + D,w(k)
where all vectors refer to Figure 1 and all masicae of compatible

dimensions. The full order controller associatethwl?2) to realize a dynamic
output feedback control problem is representedkimis

(k+1) =K yx (K)+Kgy(K)
{XCU(k) = quc)((ck)+ KDiy(yk) (13)
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Where x (k) denotes the controller states with the same direnss plant
statesx(k). Given the state space (12), the goal is to déterrthe controller

matrices in such a way that we achieve a dissiipatbondition of the closed-
loop systems. Connecting the controller (13) todysem (12), the closed-loop
form is represented as follows

%(k+1) = Ax(k)+Bw(k
{ g(k)léif((lf)z[”)iw(lg)) 4

Where>~(( k) represents the augmented state given by
. X(k)j
X(k)= (15)
(¥ [Xc(k)

and the indicated matrices are

(A+BK,C, BK,

A =( .C, Ky (16)
Bi i Al

. B, +B,K, Dyi

B —( KD, (17)

é| :(Czi +D,KyC, Dy KCi) (18)

I:N)i =D,, +D,; Ky, Dy (19)

Dissipativity of the closed-loop form is derived loyolving the stochastic
quadratic supply rate (7) and apply LMI conditidri) to closed-loop equation
(14). Based on Proposition 2, dissipativity is asduf there are some positive

definite matricesF? for all i OO that satisfy inequality matrix

F~i) * * *
S R+S'D+D'S * =
e e R (20)
Ppi6 Ppi% F’pi
_QCi _QDi 0 _Q

By employing the Schur complement to LMI (20), wanowrite that LMI as
follows:
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P * * *
'C +S'D+D'S * *
=| S RESDEDS T T s 1)
A BB
¢ -5, 0 Q

From the previous explanation, it can be seenttiefull order controller that
imposes a closed-loop system has twice the ordéregblant. Therefore, matrix

inequality (21) needs auxiliary symmetric matricBs] 0" for all i OO,
Adopting a similar method as in [18], which we eoydd in our previous paper
[29], we define a new form d?f as 2wx2n real matrices, partitioned as follows:

s (3 ) g T (A ”
i_rl;r éi’i _/\;I' Ai’i_/\;r O ()

where all blocks are x n real matrices. It can be verified that

e [Ai |j
TRT = (23)

A similar partition is also performed on matric@&, as follows:

O R =T T
%:Z%H:&ﬁ J (24)
i=1 pi pi

and denoting

(TR

5—1_[911 * j 5 _[I Epij (25)
o Q; Q,) T |0 I'ILi
it can be easily verified that
. R, |
"PQ =[ - (26)
S

Note that matrix inequality (23) and (26) are matad by the matrix
definiteness lemma stating that a maRiis positive definite if and only if there

is a matrixX such that it satisfieX"PX > 0. In the literatureX is sometimes
referred to as a congruence transformatioriP.ofrhus, matrix definiteness is
invariant under congruence transformation. As dtagf18], it is important to
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see that the four block matrices that define theriseﬁ;depend nonlinearly

on the four block matricds, . SinceQ;! == —M ;=M setting1, such

that 1, = —éi the partitioned matrix in (26) becomes
-1
a o~ =+, I
QiT PF;lQl = ( pi pl) _ (27)
I S
Letting the particular choice ofl, =—§i and constraining matrix1, be
symmetric and the negative definite matrix provifig =—§i =N'-Z,
which enables us to rewrite (27) in the form
RS VA W
chan=[q' - j (28)
I =,
In the general case, without the particular cholde=—-=;, the equality

Q, =A, does not hold any longer, but matri€zsgiven by
-1 _— =-1T
Q ==, M=, (29)
satisfy the inequalities
-1 N — =1 T - -1 -1
Q; zz;gj(:j—nj:jnj)zgpijAj > A, (30)
J= 1=

From the previous discussion, matrix inequality)(@dlds if and only if there is
a congruence transformatighsuch that it satisfies

WoW >0 (31)
Pick a congruence transformation below
W =diag(T,,1,Q..1) (32)
inequality (31) will yield
TR <
TAT T 3 * *
§ (E'-E R+ SNDi~+ D,;S o >0 (33)
|T AT| |T (1 |T|:)p_|1 i *
-QCT QD] 0 -Q
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Solve each block of matrix inequalities (33), ap@hB), (30), and introduce
some variables as follows:

K =Ky (34)
L =KoV +KuCydy (35)
F=N,Kg+=,BKy (36)

M, ==, AA +(M K, +Z,BK, AT (M, Ky +Z,BK, )C,8, (37)
then the solvability condition is summarized in thext theorem in order to
render the dissipativity of the closed-loop formdyypamic output feedback.

Theorem 1. There exists a dynamic output feedback contralféhe form (13)
in order to render the dissipativity of closed ldopm (14) with respect to the

quadratic supply rate (7) if there exist symmeimatrices =;,4;,Z; and

matricesM,, L, F,K, ,H, of compatible dimensions satisfying the LMIs

Ai * * * * *

I Ei * * * *

a,T T q” * * *

i i pi
Mi KT /]T I Epi *
T o pT 0 0 -Q
and

Z. HT
[u 'J>o (39)
O AJ.

for alli, j O0Ox[. Extra matrix variables in the LMI (38) are addols

a=(arcr+LUDy)S B=(Cl+C]K DL)S
p=R+S' (Dzzi +DzJjKiDyi)+(Dzz +Dz:IiKiDyi)T S

o=nI A+ p= A K

7= +D}K ] K= A=, 4T

A=gz, +D[F" (e +UDL)Q



36 Asep Najmurrokhman, et al.

o=-(C; +CJK'D})Q p=-(D,; +D,;KD,)Q

Furthermore, whenever (38)-(39) are solvable, tablé controller is provided

by
(KAi Kaij:[n p EpiB.j [Mi —=aAY F j( /\iT OJ (40)
Ko Ko 0 | L Ki )\ Cidy |

with M, =A™ == and A, = A, for alli O0.

Proof. Assume that (21) holds. Partitionir@ as in (22)]5‘;1as in (25), and
multiplying (21) to the right by (32) and to thdtlby its transpose, we obtain

A * * * * *
I E * * * *
T T * * *
ZT 'BT f Q * * > O (41)
M7 1i
M i KT /1T I = 5 *
m o p° 0 0 -Q

By using inequality (30), forH, =A and Z, :/\qi/\}lAqi +xl with >0,
(39) can be verified and we obtain

H+H -Z, =4, -x1 2Q; - xI (42)
By taking Y >0 sufficiently small, inequality (41) implies th&8§) holds.

Theorem 1 provides a quite general result regarttiiegolvability condition for
a dynamic output feedback control problem in onderender the dissipativity
of closed-loop systems under the Markovian jumptesgsframework. The
generality of this theorem is provided by notingttthe H-norm control and
the passivity condition are obtained by choosing éppropriate supply rate
function in the general results. Specifically, tHe-norm control such that its
norm less thary, as addressed in [18], is obtained by seledfirg -1, S= 0,
andR = yl, while passivity is recovered by choosiQg= R= 0 andS= 1. When
the conditions of Theorem 1 are fulfilled, the cargtion of a controller that
solves the dissipative control problem of a dynamitput feedback for the
Markovian jump system framework can be carried byt the following
procedure:
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1. Defining the set of matrix variables;, 4, Z; ,M,,L;,F ,K; ,H, foralli, ]
0O0Ox0 as a solution of LMI (38)
N N
2. Settingl, =A==, A\, =4, n,=>pn, and=, =3'pz,
=1 =1

3. Constructing of controller matrices by inserting above matrices into
matrix equation (40).

4 Application to a Class of Networked Control Systems

To show the effectiveness of our design, this mamsiders a numerical

simulation regarding dissipative controller synthder a class of NCSs that has
packet dropout during data transmission from thesaeto-controller channel

as well as from the controller-to-actuator chanfejure 2 illustrates the NCS

under consideration.

W G —>

=
>

Communication network 9 1

D
8]

1" ¥

K

Figure2 NCS with6, parameter.

A

In this figure, g, (k)0{0,34 and#6,(k)0{0,3 denote the indicators of the packet

dropouts in the sensor-to-controller and contreibeactuator channels,
respectively. A value of 0 indicates that the padkelropped, while a value of
1 is used to denote the condition whenever the giadk transmitted
successfully. Following the packet-dropout modelimg Seiler & Sengupta
[21], 6; is a Bernoulli process with the probability of doat (i.e.6; = 0) equal
to a; 0[0,1). For Bernoulli drops, the Markov chain onlgshtwo states and the
transition probability from any state to the dropstated; = O is equal ta; and
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the transition probability from any state to thate®, = 1 is equal to 1, as
shown in Figure 3.

I—O(,] ]_al

< ‘@ @ l_al a2 @ l_az
[0.5)

Figure3 Two-state Markov chain for modeling packet dropout.
Define the set

0={(a(k).6,(K):6,(){0.3 £,()0{ 0.} “3)

Further definer, 00 ={1,2,3,4 and the one-to-one mappinty:© - [ as
follows:

_‘
=
I

(

It is assumed thai is driven by a discrete-time Markov chain and ta&kies
in O with the transition probability; = Pr{w. = j | re = i) with p; = 0 and
Zi p, =L0i,j00. Since random variables 6f and6, are not correlated, it is
clear thatp; = 0105, Pz = 01(1-02), Pz = 0x(1-04), and pis = (1-01)(1-0).

Furthermorewe consider the spring-mass-damper model taken {8#h as
shown in Figure 4.

K F{,E,
Jif) "
OO - o0

Figure4 A spring-mass-damper model [31].
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The first mass is attached to a fixed endpoint ughoanother spring. The
problem is to control the position and velocitytisdé second mass by applying a
horizontal force on it. A state space representaitiothe form of continuous
time of that model is taken from [18] as follows:

x= Ax(t) +Bu(t)+B,w(t)
z(t) =C,x(t) + D u(t) + D,,w(t)
y(t)=C,x(t) +D,w(t)

with each matrix is in the following:

o o0 1 0

o o o 1
-30.0 10.0 - 0.36 0.3
50 -50 0.18 - 0.1

T 010 0

=000 Bz_(o 00 oj
0 500 0 O 00
C,=|0 0 0 18 D,=(0 0 o D,=|0 0
0 0 0 O 00

1 000 0 01
C, = D, =
Y10 010 ¥ 10 0.125

In the context of NCS, the position and velocity tbe first mass can be
measured and delivered to the controller througd $ensor-to-controller
channel in the communication network. Subsequeatlgontroller is designed
to overcome the packet dropout parameter which appm the sensor-to-
controller and controller-to-actuator channels. Byoosing a state in the
Markov chain under consideration as in (44), tletesspace representation in
the form of discrete-time (12) is as follows:

-0.7562 0.5086 0.07911 0.14
0.2092 0.5604 0.07175 0.40
-1.656 0.07364 - 0.7588 0.51
-0.1463 -1.289 0.2556 0.51

B,=B,=(0.02304 0.111 0.1435 0.40}: B,=B,=(0 0 0 0O’
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2i

0.1252 0.4171 0.5086- o.43jfe

( 0 0 0 0
0 500 0 O
C,=|0 0 0 18
0 0 0 O
D212=Dzl4:(0 0 :I')T Dle:Dzl3:(0 O O)T
00
DzZi_ O O
00
. (1000 0000
Cyz_cy“_(o 01 o] Cﬂ:cys:(o 0 0 o)
0 01 00
Dyz:Dy“:(o o.125j Dy1=Dy3=(0 oj

The discrete-time version of this model is obtairimwddiscretization of the
continuous model with a sampling time of 0.5 s armkro order hold placed on
each input. For the purpose of simulation, we ch@s -1, S= 0, andR =l

in the supply rate (7), which means that we dealhwhe H,-control
performance as a special case of dissipative peaioce. Table 1 shows the
performance of the system with different probaieiitof packet dropout.

Tablel Hs,-norm of different probabilities of packet dropout.

oy az Y

0.1 0.1 325
0.1 0.5 38.0
0.5 0.5 56.9
0.6 0.7 71.3
0.7 0.8 75.4
0.9 0.9 177.8

From this table we know that the more packet drgpdlie poorer the

performance of the system. The mode transition ndguthe simulation is

depicted in Figure 5. Figures 6-8 shows the tingpoase of the controlled
output and the control input of the closed-loopaysunder the specified mode
transition as depicted in Figure 5.
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Figure8 Time-response of controlled output and control thpespectively,
when packet dropout equals 90 %.

It can be seen from all figures that the designedtroller is capable of
overcoming the packet dropout effect in the netwét&wever, the simulation
result deserves some remarks. We take the threes/af probability of packet
dropout, which indicate a good, medium, and badditimm of the network,

respectively. First we consider the case when= 0.1, which means the
probability of successfully transmitting a data ketcequals 90%. As can be
observed from Figure 6, the time response of th&rotbed output tends to
converge with some spikes, which happen duringr intede transition. The
amount of control input is small enough for a smabbability of packet

dropout. Next we take two other cases, which reprea medium and a bad
condition of the network. As shown in Figures 7 a®dthe higher the

probability of packet dropout, the more controluhs required. The effect of
the probability of packet dropout on the amountcohtrol input is quite

straightforward.

To test the robustness to modeling uncertaintyemployed a state matrix in
the form ofA + AA instead ofA in our simulation. The value @A is given by
the percentage amount to nominal planBy utilizing the algorithm proposed
in the controller design, we obtained that an anmafiri0% from the nominal
plant is worst-case performance. Figure 9 and dWshe time-response of the
controlled output of the closed-loop system anddtetrol input, respectively,
with modeling uncertainty about 10% as the proligbibf packet dropout
equals 0.1. From this simulation, we can obsera the proposed method
renders the robustness of the closed-loop NCS torescribed modeling
uncertainty.
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controlled output

time (s)

Figure9 Time-response of controlled output with modelingenainty about
10% from nominal plant when packet dropout equ@l$al

signal u

control law

time (s)

Figure10 Time-response of control input with modeling unaity about
10% from nominal plant when packet dropout equ@l$al
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5 Conclusions

This paper presents a dissipative controller dedimgna dynamic output

feedback problem in NCSs modeled by the Markoviemg system. The main
result is that the solvability condition of thabptem, represented by two LMiIs,
was solved. Based on the solutions of the LMIs,wege able to construct a
controller by plugging unknown variables in thosklls into the controller

matrices equation. We applied the results to arobet design for a class of
NCSs that has packet dropout during data transomisbom the sensor-to-
controller channel as well as from the controleattuator channel. Our
numerical simulation showed that the designed odatr is capable of

overcoming the packet dropout effect in the netwasdkwell as rendering the
robustness property to a prescribed modeling uaicgyt Further studies will

be focused on the inclusion of a parametric ungdytaand then designing
robust control systematically with dissipative pemhance, as well as exploring
a nonlinear model of an NCS under the Markoviangsystem framework.
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